• Skip to main content
  • Skip to primary sidebar
  • Home
  • News
  • Featured
  • More News ⌄
    • SatNews
    • SatMagazine
    • MilSatMagazine
  • Events ⌄
    • MilSat Symposium
    • SmallSat Symposium
    • Satellite Innovation
  • Contacts
  • SUBSCRIPTION

SmallSat News

You are here: Home / Featured / A First for Rocket Lab with their Recent Running Out Of Fingers Mission

A First for Rocket Lab with their Recent Running Out Of Fingers Mission

December 10, 2019 by editorial

Rocket Lab has flown a fully Autonomous Flight Termination System (AFTS) for the first time on an Electron launch vehicle.

The AFTS flown on the company’s most recent mission, ‘Running Out Of Fingers,’ makes Rocket Lab one of only three U.S. launch companies to fly with an autonomous system.


The Electron launch of Rocket Lab’s “As the Crow Flies” mission. Photo is courtesy of Sam Toms and Simon Moffatt.

AFTS is a GPS-aided, computer-controlled system designed to terminate an off-nominal flight, replacing traditional human-in-the-loop monitoring systems. AFTS is crucial to increasing launch frequency and providing responsive launch capability, while maintaining the highest industry safety standards. It reduces the turnaround time between missions and provides greater schedule control by eliminating reliance on ground-assets and human flight termination operators.

‘Running Out Of Fingers’ hosted the first fully autonomous system on Electron. The launch followed four ‘shadow’ flights where the AFTS unit was flown on the vehicle for testing while traditional ground-based flight termination infrastructure remained in place. With the first fully autonomous mission now complete, all future Electron missions from Launch Complexes 1 and 2 will fly with the AFTS.

Flight termination systems are a vital part of launch operations. Traditionally, flight termination infrastructure is a ground-based system that involves a human making the decision to terminate a mission in the event of a launch vehicle straying from a pre-determined flight path. By contrast, the AFTS is an independent, self-contained subsystem mounted on-board the Electron launch vehicle. It eliminates the need for a ground-based infrastructure by moving the flight termination function to the launch vehicle.

The system makes flight termination decisions autonomously by using redundant computers that track the launch vehicle using Global Positioning System and on-board sensors, combined with configurable software-based rules, that identify where the rocket can safely fly. If a rocket goes off course the AFTS will issue a command to terminate the flight by shutting down the engines. The AFTS also delivers faster response times and improved monitoring as launch vehicle travels downrange, providing over-the-horizon tracking capabilities that are not limited by line-of-sight tracking such as that required by ground-based instrumentation at the launch site.

Rocket Lab Founder and CEO, Peter Beck, said the AFTS is yet another way Rocket Lab is innovating to increase the pace of launch and support responsive launch capability for small satellites. As the company moves to an autonomous system, Rocket Lab thanks the dedicated teams from White Sands Missile Range and Alaska Aerospace Corporation who have provided ground-based flight termination system support for Electron missions since the firm’s first launch in 2017. Their support has ensured the safety of every Electron mission and they have contributed to Rocket Lab’s record of mission success for customers.

Naomi Altman, Rocket Lab’s Avionics Manager and Project Lead for the AFTS program, added that for AFTS to be part of Electron’s 10th launch was the cherry on top of a monumental year for the entire team. Reaching this milestone is also testament to the ongoing support of government agencies and contractors who worked closely with Rocket Lab to bring the AFTS online.

Filed Under: Featured, News

Primary Sidebar

WEEKLY NEWSLETTER

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019

© 2019–2023 SatNews

x
Sign Up Now!

Enjoy a free weekly newsletter with recent headlines from the global SmallSat industry.

Invalid email address
We promise not to spam you. You can unsubscribe at any time.
Thanks for subscribing! You will now receive weekly SmallSat News updates.
We love our advertisers.
And you will too!

Please disable Ad Blocker to continue... We promise to keep it unobtrusive.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Thanks for subscribing! Please check your email for further instructions.