Morgan Stanley believes two to three LEO constellations could be fully operational within the next five years; however, funding and technology remain strong impediments.
LEO operators could drive gross global satellite capacity up by 20x in the coming years: Current global high-throughput satellite (HTS) capacity is sits at less than 3 Tbps with LEO operators looking to launch close to 200 Tbps more over the next five years.
SpaceX’s Starlink is the largest contributor by far, but we are also focused on efforts from OneWeb, Telesat, Kepler and Kuiper (Amazon). In order to provide continuous coverage at low elevations, each of these companies plans to launch hundreds or thousands of satellites to service customers globally.
Significant obstacles remain: While the current LEO race was borne out of a desire to connect the ~4 billion people globally currently without internet access, the economic viability of these constellations is still a key debate. By their design, LEO systems distribute capacity evenly across the Earth’s surface, but populations are unevenly distributed as ~70% of the Earth is covered by water with people largely concentrated in just 10% of the remaining area.
Other key concerns include ground network technology, user terminal costs, high ongoing capex needs and regulatory hurdles (including orbital debris). Total build costs for the proposed LEO constellations are still unknown and vary widely given the scope of each project. In our separate SpaceX note, we estimate the full Starlink constellation could ultimately cost ~$40 billion to build with an additional ~$130 billion for user terminals (see Space: The Wide Range of Outcomes for SpaceX).
LEOs are likely to struggle against VHTS GEO but could impair older GEO satellites: The company performed an analysis comparing LEO constellation capacity costs against various types of GEO satellites and found that next-generation VHTS Ka-band GEO satellites are ~5x more efficient. However, they could outperform legacy HTS Ku-band satellites, which could impair those legacy assets and exert further pricing pressure in the industry.
Significant addressable markets, but economics remain a major factor: As noted above, the largest addressable market is providing internet to the billions of unserved and underserved people globally. However, satellite broadband has struggled to grow beyond 2% market share in the US and 1% globally due to its high relative cost and capacity limitations, while LEO constellations will also have to address user terminals that cost three times as much as GEO terminals.
More attractive markets that lack terrestrial alternatives and face fewer economic barriers include aeronautical, maritime, enterprise, wireless backhaul, IoT and government with each offering the potential for billions in annual revenue.