• Skip to main content
  • Skip to primary sidebar
  • Home
  • News
  • Featured
  • More News ⌄
    • SatNews
    • SatMagazine
    • MilSatMagazine
  • Events ⌄
    • MilSat Symposium
    • SmallSat Symposium
    • Satellite Innovation
  • Contacts
  • SUBSCRIPTION

SmallSat News

You are here: Home / News / UPDATE 3: The USSF’s STP-3 Mission Launch By ULA Is Successful — The STPSat-6 Satellite Is Released From Earth’s Gravity Via An Atlas V Rocket + Navigates To Orbit

UPDATE 3: The USSF’s STP-3 Mission Launch By ULA Is Successful — The STPSat-6 Satellite Is Released From Earth’s Gravity Via An Atlas V Rocket + Navigates To Orbit

December 7, 2021 by editorial

A United Launch Alliance (ULA) Atlas V rocket carrying the Space Test Program (STP)-3 mission for U.S. Space Force lifts off from Space Launch Complex-41 at 5:19 a.m., EDT, on Dec.ember7, 2021.

The Atlas V launch of STP-3 for the USSF by ULA… photo is courtesy of the company.

The STP-3 mission consists of the STPSat-6 satellite that hosts the National Nuclear Security Administration‘s Space and Atmospheric Burst Reporting System-3 (SABRS-3) package and NASA’s Laser Communications Relay Demonstration (LCRD) experiment. The launch also includes a propulsive secondary payload adapter carrying additional small science and technology missions.

Pre-launch view of the Atlas V on the ULA pad with the STP-3 payload aboard. Photo is courtesy of the company.

The mission launched on an Atlas V 551 configuration rocket that included a 5.4 meter payload fairing and stands 196 ft. (59.7 m) tall. The Atlas booster for this mission is powered by the RD AMROSS RD-180 engine. Aerojet Rocketdyne provided the RL10C-1 engine for the Centaur upper stage and Northrop Grumman provided the five Graphite Epoxy Motors (GEM) 63 solid rocket boosters.

This was the 90th launch of the Atlas V rocket. To date, ULA has launched 146 times with 100 percent mission success.

  • STP-3 is a co-manifested mission that matures technology and reduces future space program risk for the Department of the Air Force and the U.S. Space Force by advancing warfighting capabilities in the areas of nuclear detonation detection, space domain awareness (SDA), weather, and communication. Both spacecraft will be delivered to geosynchronous orbit. Liftoff will occur from Space Launch Complex-41 at Cape Canaveral Space Force Station, Florida.
  • The OoA payload fairing was developed with a new manufacturing method, an alternative process to cure carbon fiber composites, which allows for a more efficient production process, lower cost and lower system mass while maintaining the same level of reliability and quality.
  • The Atlas V is also equipped with a new In-Flight Power System (IFPS). This system supplies power to the satellites’ batteries during the rocket’s long duration ascent, a mission more than seven hours. The IFPS will ensure the spacecraft have fully charged batteries when deployed into geosynchronous orbit.
  • GPS Enhanced Navigation is an additional first flight item that utilizes existing flight computer hardware to provide GPS signals that improve the Centaur‘s navigation system performance, allowing the Centaur to achieve even more accurate orbits.
“STP-3 is a unique mission as the Atlas V will deliver STP-3 directly into Geosynchronous Equatorial Orbit (GEO). This is a highly complex orbital insertion that requires three Centaur burns and precise navigation, a capability unique to the Atlas V. This is our longest mission to date at seven hours and 10 minutes until final spacecraft separation,” said Gary Wentz, ULA vice president of Government and Commercial Programs. “We are proud to work alongside our mission partners to prepare to launch this challenging mission and thank them for their outstanding teamwork.”

Filed Under: News

Primary Sidebar

WEEKLY NEWSLETTER

Archives

  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019

© 2019–2025 SatNews

x
Sign Up Now!

Enjoy a free weekly newsletter with recent headlines from the global SmallSat industry.

Invalid email address
We promise not to spam you. You can unsubscribe at any time.
Thanks for subscribing! You will now receive weekly SmallSat News updates.
We love our advertisers.
And you will too!

Please disable Ad Blocker to continue... We promise to keep it unobtrusive.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Thanks for subscribing! Please check your email for further instructions.