• Skip to main content
  • Skip to primary sidebar
  • Home
  • News
  • Featured
  • More News ⌄
    • SatNews
    • SatMagazine
    • MilSatMagazine
  • Events ⌄
    • MilSat Symposium
    • SmallSat Symposium
    • Satellite Innovation
  • Contacts
  • SUBSCRIPTION

SmallSat News

You are here: Home / News / USC’s Satellite Dodona With Lockheed Martin La Jument Payloads Travels To Orbit

USC’s Satellite Dodona With Lockheed Martin La Jument Payloads Travels To Orbit

January 14, 2022 by editorial

Artistic rendition of USC SERC’s Satellite Dodona

The University of Southern California (USC)‘s Satellite Dodona, with its novel Lockheed Martin La Jument payloads, is part of SpaceX’s Smallsat Rideshare Program and was transported to orbit via SpaceX’s Transporter 3 mission.

Partner Lockheed Martin supported USC students (graduate and undergraduate) and faculty to take an internally built cubesat (measuring 30 cms. by 10 by 10, called Dodona) the size of bread box and test Lockheed Martin’s newest payload technologies in orbit, including new software that allows for rapid mission changes while in orbit. This SmartSat™ technology is part of Lockheed Martin’s larger La Jument program and Dodona is the first is a series of demonstration flights.

Dodona is a project out of USC’s Space Engineering Research Center, directed by Professor David Barnhart, which is a joint research center from USC Viterbi School of Engineering Department of Astronautical Engineering and the Information Sciences Institute.

The La Jument payload suite includes low SWAP (size, weight and power) optical and infrared cameras that employ algorithms to enhance imagery on-orbit, plus Lockheed Martin’s Compass advanced mission planning app. The Compass team developed a new Target Selection Visualization tool that makes it much easier to identify a targeted region to photograph. Using a map overlay, users can pick a point on the map within the satellite’s coverage area and the tool translates that into messages relayed back to the USC team commanding the satellite.

In addition to Lockheed Martin’s new technology suite, the SERC team is testing a new “B dot” controller — a new guidance control algorithm that interacts with the Earth’s magnetic field to stabilize the satellite in orbit.

SERC launched its first satellite, Careus — developed in partnership between USC and Northrop Grumman — in 2010, and its second satellite, Aeneas, in 2012. The process of developing and launching a satellite requires vigorous design work and testing, including “shake and bake” testing, which literally checks how the satellite fares when shook and heated to simulate launch. Satellites also must adhere to global regulations, including making sure the team can bring the satellite down within an agreed upon period of time and ensuring the satellite’s orbit will not interfere with other satellites.

Part of SERC’s mission is creating hands-on opportunities for students and faculty to build and test advanced space technology, in addition to integrating, launching and operating small satellites. Dodona takes advantage of the space focused curriculum through analysis tools and techniques that are taught at USC through the Astronautical Engineering Department.

For Dodona, the team also needed to receive FCC approval for operating its small radio, an off-the-shelf radio made for cubesats so the satellite can both receive commands sent up from the ground station (located on USC’s University Park campus) and downlink data on the health and status of the satellite while in orbit. Lockheed Martin will operate a similar ground station at their Valley Forge facility in Pennsylvania.

In the following two weeks, the USC-Lockheed Martin team will assess mission success criteria, including the satellite’s launch into and stability on-orbit and its ability to transmit data about what’s happening on the spacecraft. The mission is focused on Lockheed Martin’s optical payload and will be the first satellite from USC that is able to take photos of the Earth from space.

SERC’s next small satellite project is Magneto, a fully student-built class project it hopes to launch in late 2022, and has a new rendezvous technology planned to fly inside the International Space Station in early 2023.

Tom Smith, the vice president for Lockheed Martin’s Centers of Excellence that include Optical Payloads, said, “The La Jument integrated payload was designed by Lockheed Martin and then integrated and tested with Dodona by USC students at the Space Engineering Research Center (SERC). The La Jument 3U payload on Dodona will be the first satellite to fully use Lockheed Martin’s SmartSat™ software-defined satellite architecture on its payload. It’s a game changer for space because we can easily update satellites after launch and use advanced AI algorithms in orbit instead of just on the ground.”
Sonia Phares, vice president for engineering and technology at Lockheed Martin Space, added, “The La Jument/Dodona launch is the first of three rapid prototyping missions Lockheed Martin will deliver in 2022. Our dual LINUSS spacecraft will be in GEO orbit by Mid-May and our dual Pony Express 2 spacecraft will be launch to low earth orbit in October. “

The SpaceX Smallsat Rideshare program offers a viable and affordable option to launch up to 200 kg. into an SSO LEO

Filed Under: News

Primary Sidebar

WEEKLY NEWSLETTER

Archives

  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019

© 2019–2025 SatNews

x
Sign Up Now!

Enjoy a free weekly newsletter with recent headlines from the global SmallSat industry.

Invalid email address
We promise not to spam you. You can unsubscribe at any time.
Thanks for subscribing! You will now receive weekly SmallSat News updates.
We love our advertisers.
And you will too!

Please disable Ad Blocker to continue... We promise to keep it unobtrusive.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Thanks for subscribing! Please check your email for further instructions.