• Skip to main content
  • Skip to primary sidebar
  • Home
  • News
  • Featured
  • More News ⌄
    • SatNews
    • SatMagazine
    • MilSatMagazine
  • Events ⌄
    • MilSat Symposium
    • SmallSat Symposium
    • Satellite Innovation
  • Contacts
  • SUBSCRIPTION

SmallSat News

You are here: Home / News / NeoPhotonics Intros An Ultra-Narrow Linewidth Laser for LEO Satellite Use

NeoPhotonics Intros An Ultra-Narrow Linewidth Laser for LEO Satellite Use

March 9, 2022 by editorial

NeoPhotonics Corporation (NYSE: NPTN), has announced the company’s new Radiation Tolerant version of its industry leading, Nano, ultra-pure light, tunable laser that has been designed for use in LEO SATCOM applications has debuted.

NeoPhotonics’ current Nano-ITLA laser is in high volume production for terrestrial fiber optics applications and is used by many of the leading optical networking companies in their most advanced, coherent, pluggable modules and high-speed, embedded systems. This new radiation tolerant laser introduces enhancements including an adaptive approach to achieve extended lifetime operation of the proven Nano laser hardware in a radiation flux environment to enable reliable operation in space without compromise to performance and stability.

Multiple companies are now deploying or developing constellations of LEO satellites to bring high bandwidth communications to areas not currently served by wireless infrastructure. These constellations consist of thousands of satellites which must have high bandwidth connections between them to avoid service drop-outs. These satellite-to-satellite communications links are now shifting from micro-wave to coherent optical technology, taking advantage of the vast increase in transmission capacity developed for terrestrial fiber optic communications, where 800 Gbps is now regularly transmitted on a single wavelength.

While coherent communications technology is now highly advanced, space is a hostile environment for the electronics and related hardware used in telecommunications, largely due to radiation impacts from galactic cosmic rays, high-energy particles from the sun, and particles trapped by the earth’s magnetic field. Special ‘radiation hardened’ electronic devices, which are more robust than those typically used on the ground, are often used to mitigate these issues, but they can add significantly to cost. For the lasers used in coherent communication, the control electronics are often more vulnerable to these radiation effects than the laser itself.

One example of the laser control subsystem electronics that is particularly vulnerable to ionizing radiation is the memory (RAM and FLASH) that microprocessors rely on. While radiation effects on memory can be lessened by using special packaging or by more expensive hardware components, the effects of ionizing radiation on memory corruption can also be mitigated by incorporating radiation tolerant software enhancements, resulting in greatly improved reliability, recovery and resilience, as has been demonstrated during laboratory testing designed to simulate low earth orbit conditions

“NeoPhotonics has been a leader in the design, development and high-volume production of ultra-narrow linewidth tunable lasers for coherent communications over the last decade, and we are excited to offer our high performance to the exciting new application of satellite communications,” said Tim Jenks, Chairman and CEO of NeoPhotonics. “We have used our long experience and deep understanding of lasers technology to develop an innovative software-centric approach to radiation tolerance that speeds time to market, while maintaining performance and limiting costs.”

NeoPhotonics is a leading developer and manufacturer of lasers and optoelectronic solutions that transmit, receive and switch high-speed digital optical signals for Cloud and hyper-scale data center internet content provider and telecom networks. The Company’s products enable cost-effective, high-speed over distance data transmission and efficient allocation of bandwidth in optical networks. NeoPhotonics maintains headquarters in San Jose, California and ISO 9001:2015 certified engineering and manufacturing facilities in Silicon Valley (USA), Japan and China. For additional information visit www.neophotonics.com.

Filed Under: News

Primary Sidebar

WEEKLY NEWSLETTER

Archives

  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019

© 2019–2025 SatNews

x
Sign Up Now!

Enjoy a free weekly newsletter with recent headlines from the global SmallSat industry.

Invalid email address
We promise not to spam you. You can unsubscribe at any time.
Thanks for subscribing! You will now receive weekly SmallSat News updates.
We love our advertisers.
And you will too!

Please disable Ad Blocker to continue... We promise to keep it unobtrusive.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Thanks for subscribing! Please check your email for further instructions.