• Skip to main content
  • Skip to primary sidebar
  • Home
  • News
  • Featured
  • More News ⌄
    • SatNews
    • SatMagazine
    • MilSatMagazine
  • Events ⌄
    • MilSat Symposium
    • SmallSat Symposium
    • Satellite Innovation
  • Contacts
  • SUBSCRIPTION

SmallSat News

You are here: Home / News / HydRON: Satellites using lasers for faster data sharing

HydRON: Satellites using lasers for faster data sharing

October 29, 2024 by editorial

ESA has signed a contract for Element #1, the first phase of the HydRON Demonstration System — HydRON, which stands for High thRoughput Optical Network, is set to transform the way data-collecting satellites communicate through the use of laser technology that will allow satellites to connect with each other and ground networks far faster.

ESA has selected Kepler Communications of Canada as prime contractor for Element #1 of HydRON. Element #1 involves creating a ring of ten satellites in LEO, laying the foundational support for communications between third-party satellites and ground users.

The project aims to enable seamless integration of a space data relay transport layer for space assets in different orbits that need to relay their collected data to users on the ground. The following two elements of HydRON will focus on adding satellites in non-LEO orbits as well as adding to the optical ground segment. Once completed, HydRON will aim to provide rapid connections between satellites and terrestrial (ground) data networks. 

Optical communication technologies have the potential to reduce the bottlenecks created by traditional radio frequency systems which are competing for already crowded radio frequency spectra and are subject to heavy regulation. By enabling rapid, high-capacity connections between satellites and ground networks, HydRON will significantly enhance our ability to collect and utilise data from space.  

This capability is particularly crucial for Earth Observation (EO) missions, where large datasets typically need to be downloaded from satellites a few times a day during passes over ground stations. With HydRON, these satellites can connect to the network and transmit data back to Earth much more efficiently, without waiting for specific satellite passes. This advanced system will provide substantial benefits for both government and commercial users, supporting a wide range of applications from environmental monitoring to disaster response. 

The HydRON laser beams can also carry far more data than traditional radio waves. The system is designed to connect seamlessly with the fiber optic networks already in use on Earth, creating a fast and reliable global network. This technology supports advanced 5G networks and enables new technologies such as AI and IoT. HydRON’s capabilities extend beyond improving data transfer from Earth observation satellites. As part of ESA’s broader vision, this technology could be used and adapted to support future missions to the Moon and beyond.

Mina Mitry, Chief Executive Officer and Co-founder of Kepler, and Laurent Jaffart, ESA Director of Connectivity and Secure Communications signing the HydRON Element #1 contract at IAC 2024
Mina Mitry, Chief Executive Officer and Co-founder of Kepler, and Laurent Jaffart, ESA Director of Connectivity and Secure Communications signing the HydRON Element #1 contract

The signing ceremony was attended by Josef Aschbacher, ESA Director General; Laurent Jaffart, ESA Director of Connectivity and Secure Communications; ESA Astronaut Alexander Gerst; Harald Hauschildt, ESA Head of Optical and Quantum Program – ScyLight; Lisa Campbell, President of the Canadian Space Agency; Tuan Huynh, CSA Director General for Space Science & Technology and Mina Mitry, CEO and Co-founder of Kepler Communications Inc. HydRON is also supported by the German Aerospace Centre (DLR), which is developing various technologies for the ground and space segments.

“ESA is proud of the HydRON project, which exemplifies the power of European and Canadian collaboration in advancing space technology. With its laser satellite network for lightning-fast internet-like communications, HydRON has the potential to transform how we connect globally, bridging digital divides and enabling secure communications on Earth and beyond,” said Josef Aschbacher, ESA Director General.

“The signing of the Element #1 contract marks a significant milestone in advancing optical and quantum communications in space,” said Laurent Jaffart, ESA’s Director of Connectivity and Secure Communications. “ESA is proud to be supporting future-facing and innovative risk sharing, driving space-based communications and potential future lunar and solar system missions.”

“For 45 years now, Canada’s collaboration with ESA has resulted in opportunities to participate in European space program projects that would otherwise be out of reach. For Canadian companies, having this unique access to the European space market means commercialization prospects and concrete sales, job creation and knowledge-sharing, and international partnerships opportunities. We look forward to continuing this partnership to strengthen the strong synergies between our industrial, academic and government sectors as we advance space science and technology together,” said Lisa Campbell, President of the Canadian Space Agency.

“Kepler is proud to lead the HydRON Element#1 contract, collaborating with TESAT and Airbus to deliver a state-of-the-art optical constellation that will enable the development of terabit-per-second data relay in space. This program is aligned with Kepler’s core mission to extend Internet-like connectivity speed to space and will improve secure access to space-generated data for all ESA member states,” said Mina Mitry, Chief Executive Officer and Co-founder of Kepler.

HydRON falls under ESA’s Optical and Quantum Communications – ScyLight strategic program line, part of the wider ARTES program.

Filed Under: News

Primary Sidebar

WEEKLY NEWSLETTER

Archives

  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019

© 2019–2025 SatNews

x
Sign Up Now!

Enjoy a free weekly newsletter with recent headlines from the global SmallSat industry.

Invalid email address
We promise not to spam you. You can unsubscribe at any time.
Thanks for subscribing! You will now receive weekly SmallSat News updates.
We love our advertisers.
And you will too!

Please disable Ad Blocker to continue... We promise to keep it unobtrusive.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
Thanks for subscribing! Please check your email for further instructions.